If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+6w=160
We move all terms to the left:
4w^2+6w-(160)=0
a = 4; b = 6; c = -160;
Δ = b2-4ac
Δ = 62-4·4·(-160)
Δ = 2596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2596}=\sqrt{4*649}=\sqrt{4}*\sqrt{649}=2\sqrt{649}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{649}}{2*4}=\frac{-6-2\sqrt{649}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{649}}{2*4}=\frac{-6+2\sqrt{649}}{8} $
| 20x^2-15x-25=0 | | x+90=2x-(0.4*2x) | | 3(4.5-2x)-18(x+5)=5(1.5-1.4x) | | 180-3x-10=2x+20 | | 2x+20+3x-10=180 | | a+6=50 | | 3(2x-1)+7=6x-3-2(2-2x) | | M-10=2x-30 | | 2x+6=(x+10)-(4-x) | | 7(x-1)=5x-3 | | 200-41x=370 | | 2/3z+1=-14 | | 5(2x-1)+4x=15 | | 7+2+2a-3a=5a | | 9+2a-3a=54 | | 9+-1a=5a | | p^2+1.74p=0.25 | | (0.4y-3)/(1.5+9)=-7/5 | | 14+2x=3x+3 | | 5y-4(0)=20 | | 3(2x+2)+5=23 | | X²-35x+300=0 | | 5d+1=9 | | 5(0)-4x=20 | | 5(0)=4x=20 | | 5(3+2x=35 | | 6x+11/(2x+3)-(5x-2)=17/2 | | 100=5^b | | 0,75(42,76+8,48x)-4,2(0,75-0,6x)=(-3,4x-0,6))x1,8 | | 12x+22=17(2x+1-5x) | | 2x+4x=x+12 | | 15*x=0.73 |